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PREFACE

This final report covers the work that Applied Research Laboratories was

tasked to perform under Contract N00039-91-C-0082, TD No. 01A1006, entitled
Bottom Penetration at Shallow Grazing Angles I1.
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EXECUTIVE SUMMARY

This work was conducted under Task Description 01A1006, titled Bottom
Penetration at Shallow Grazing Angles II. The objective is a new theory of
acoustic penetration of sandy sediments that will address the shortcomings of
current models, and lead to improved bottom backscattering models.

Recent studies of experimental data suggest that current models for
acoustic penetration and backscatter might be improved in two ways. First, by
incorporating the Biot theory, a more appropriate model for refraction of acoustic
waves into the bottom may be obtainable. Second, the inclusion of the effects
of trapped gas bubbles might improve predictions of backscattering strength of
sediments. The first of the above modifications was suggested by the results of
experiments at sea by Chotiros and in a laboratory tank by Boyle and Chotiros.
In these experiments a slow acoustic wave that appears consistent with the Biot
theory was observed. This slow wave affects the bottom penetration problem
significantly, particularly at shallow grazing angles where previous theories
predict no refractive penetration. The second modification was suggested by
Chotiros and Boyle in a compilation of previous experimental data. Much of the
data exhibited a broad maximum in the backscattering strength spectrum that
appeared consistent with resonances involving bubbles of radii comparable to
the mean pore size.

A model for acoustic penetration based on the Biot theory was modified
to allow for a change in fluid compressibiltity due to trapped gas. It is
noteworthy that, except for high gas fractions, a significant amount of acoustic
energy is predicted to penetrate the sediment, even when the grazing angle is
very shallow. Other interesting predictions of ihis model were a minimum in the
reflection coefficient when the gas fraction is between 10.5 and 10-4 and a
spatial interference pattern between Biot slow and fast wave contributions to the
total sediment pressure. The interference pattern has not yet been observed
experimentally, possibly because of scattering.

A preliminary backscatter model was developed that accounts for
trapped bubble resonances. The results of this model were compared to

ix



experimental results. At gas fractions between 4x10 - 5 and 5x10-6 , this

preliminary model predicts backscattering strengths that are generally

consistent with extant experimental data.

In conclusion, the analysis shows that inclusion of the Biot theory affects

the bottom penetration significantly. Alsc, experiments suggest that sediment
gas bubbles may account for a considerable portion of sediment acoustic
backscatter. In the next task, the Biot model and the sediment bubble scattering
model will be combined.

X



1. INTRODUCTION

The applicability of the Biot theory to acoustic propagation in sandy

sediments was suggested by recent experimental results at sea1 ,2 and in a

laboratory tank.3 These experiments detected thr existence of a slow

compressional acoustic wave similar tu that predicted by the Biot theory. The

influence of this particular wave may have significant impact on bottom

penetration, particularly at shallow grazing angles. In this regime the slow

wave's speed allows it to penetrate while the fast wave reflects totally back up

into the water column. The slow wave might therefore contribute significantly to

shallow grazing angle volume backscatter from sediments, and a theory that

includes this wave is essential.

The influence oi gqs on the backscattering strength of sandy sediments is

suggested by a compilation of backscatter data taken by Chotiros.4 The

backscattering strength spectrum at several sites exhibits a broad maximum that

appears consistent with a probable mean bubble radius.

The mechanism for acoustic interaction with the ocean bottom will be

treated in two parts. First, a moael derived from the Biot theory5 ,6 for acoustic

penetration into sandy sediments will be discussed. Second, a model for

acoustic backscatter from entrapped gas will be considered. Combining the two

will lead to a model of bottom backscatter from gas bubbles.

In this report, the two models are developed separately. Further

development and integration will - e accomplished under follow-on tasks.
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2. ACOUSTIC PROPAGATION MODELING

2.1 MODEL DESCRIPTION

The theoretical work for this project begins with a model for reflection and

transmission devised by Stern and Bedford. 7 A comparison of the Biot's

displacement equations as given by Stern with those originally published by

Biot is given in Appendix A. This particular model is based on the Biot theory,
which predicts the existence of two compressional waves. The model was

selected because previous experimental work8 -1 0 suggests the possible

existence of two separate compressional waves. Various modifications were
made to Stern's model to enable calculation of reflection and transmission

coefficients, and to model the effect of gas bubbles in the pore fluid.

The existence of gas in the sediment was modeled by varying the

complex compressibility and density of the iluid phase appropriately. The gas

contribution to these parameters was obtained from a theory developed by
Hawkins and Bedford1 1 involving reflection coefficients from bubbles. The

theory includes resonance phenomena involving a distribution of bubble radii.
It is an extension of previous work involving propagation through uniform

bubbles. There is no allowance for coupling between individual bubbles. A log
normal bubble size distribution is assumed and the mean and variance of

bubble size are specified. For this purpose an assumption was made that
bubbles in the sediment have radii comparable to the pore radius.

The model predicts phase velocities, attenuations, reflection coefficients,

and pressure amplitudes in the sediment as functions of depth, grazing angle,
gas content, and frequency. The input parameters are listed in Table 2.1. They
were chosen to model sandy sediment and are generally the same parameter
values used by Stern and Bedford 12 with two exceptions. The exceptions were
made based on acoustic analysis results of bottom penetration into sand from

the Kings Bay experiment, the Panama City experiment, and most recently from
an experiment in the Applied Research Laboratories, The University of Texas at
Austin (ARL:UT) sand tank.

3



TABLE 2.1
BlOT MODEL INPUT PARAMETERS

Fluid Density 1000 kg/m 3

Fluid Bulk Modulus 2.0 x 109 Pa

Porosity 0.47

Grain Density 2650 kg/m 3

Pore Size 1.0 x 10-5 m

Viscosity 1.0 x 10-3 kg/m-s

Permeability 1.0 x 10-10 M2

Grain Bulk Modulus 0.9 x 1010 Pa

Frame Shear Modulus 2.61 x 107 Pa

Shear Logarithmic Decrement 0.15

Frame Bulk Modulus 4.36 x 109 Pa

Bulk Logarithmic Decrement 0.15

Virtual Mass Parameter 1.25

Gas Bulk Modulus 2.48 x 105 Pa

Average Bubble Radius 1.0 x 10-5 m

Standard Deviation in Bubble Radius 5.0 x 10-6 m

4



One exception is the grain bulk modulus. No direct experimental
measurements of this quantity could be found by the authors. The original grain

bulk modulus used by Stern was chosen to be that of pure quartz crystals.
Since sands in general contain imperfections and impurities it is reasonable

that the actual grain bulk modulus may differ significantly from this value. The
acoustic analysis results mentioned above suggest a value less than Stern's by

a factor of four. Current work on a direct measurement of this parameter1 3

appears to support these acoustic analysis results. The other exception is the
frame bulk modulus. The acoustic analysis results suggested a value ten times

greater than Stern's.

The gas bubble size in this analysis was assumed to reflect that of the

grains of sand in the sediment. The bubble mean diameter was set equal to the

pore size. Further work on an accurate estimation of the bubble population

distribution is in progress. Some of this work is described in Section 3.2.

It is noteworthy that some of the Biot input parameter values are still

somewhat uncertain. Other parameters, such as the virtual mass parameter,

are also difficult to determine. The parameters tabulated in Table 2.1 are the

best that can be determined at the present time.

2.2 RESULTS

The model was used to predict acoustic wave speeds in the sediment,

the reflection coefficient, and penetration loss. The results are shown in

Figs. 2.1 - 2.8.

Figure 2.1 is a plot of the phase velocities of the Biot fast, slow, and shear

waves as functions of gas content at 60 kHz. Similar plots were computed at 30

and 120 kHz and they appear virtually identical. The slow wavespeed appears

to be quite sensitive to gas content when the gas fraction is greater than 10-5 .
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Figure 2.2 is a three-dimensional mesh plot of the reflection coefficient as
a function of gas content and frequency at a grazing angle of 150. Noteworthy is
a broad minimum in the reflection coefficient at a gas fraction of between
10-5 and 10-4 in the frequency band of interest between 30 and 120 kHz.

Figures 2.3 - 2.7 are contour plots of the pore pressure and satuiated
sediment pressure amplitudes as functions of depth and grazing angle at a
frequency of 60 kHz and gas fractions of 10-7 to 10-3 . Such contour plots were
also made at 30 and 120 kHz. These looked almost identical to those taken at
60 kHz. On a dimensionless depth scale measured in wavelengths at the
speed of sound in water, there is apparently very little frequency dependence in
the pressure amplitude. At large gas fractions, greater than 10- 3 , there is very
little pressure transmitted at shallow grazing angles. Otherwise significant

penetration is predicted at all angles.

Figure 2.8 is a three-dimensional mesh plot of the saturated sediment
pressure. It is interesting that a standing interference pattern is predicted,
caused by the interference of the Biot fast and slow waves. So far this
interference pattern has not been detected experimentally, possibly because of
scattering.

The present model can only accommodate plane waves in the fluid
above. Work is in progress to allow the accommodation of spherical or
cylindrical waves. Work is also in progress to allow computation of transmission
coefficients for each of the Biot waves.

Of ultimate interest is the volume backscatter intensity from gassy
sediments. Once the problem of transmission into the sediment has been
solved, current work on acoustic backscatter from bubble distributions wil! be
used to arrive at a model for backscatter from bubble distributions in the
sediment.

14



3. SCATTERING

3.1 OVERViEW

Acoustic backscatter from sediments can be divided into two groups;
surface scattering of the incident wave and volume scattering of a refracted or
evanescent wave inside the sediment. The latter of these types will be the
subject of the following discussion. The emphasis will be on the case where the
wavefront is at a subcritical grazing angle.

Measurements of acoustic backscattei from sediments at shallow grazing
angles began in the 1950s with a measurement by Urick. 14 From 1964 to the
early 1980s the one outstanding source of data was that of McKinney and
Anderson. 15 Since 1982 the amount of data available has doubled, with work
being done in the USA, the UK, the USSR, and Canada. The following is a
statistical study of these data. The trends suggest that gas bubbles may be a
dominant factor in the backscattering strength of sediments. This hypothesis
will be explored with a simp!e model.

3.2 STATISTICAL STUDY

Figure 3.1 is a scatter plot incorporating all of the above data. In this plot
the measured backscattering strength is plotted against grain diameter in
waveiengths. The data span a region between a theoretical upper limit
associated with Lambert's rule and a lower limit defined by the results of some
experiments by Nolle 16 with carefully graded laboratory sands.

When each of the above data sites is examined separately, two kinds of
trends are apparent. In Fig. 3.2 data points from the same site are connected
with lines. In the first group of data points the backscattering strength increases
steadily with grain size just as it does in Nolle's data. The second group of data
poirts exhibits a broad maximum in the backscatter intensity when the grain
diameter is about 10-2.5 wavelengths. The fact that this coincides with the

15
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resonance diameter of gas bubbles suggests that this set of data may be

influenced by gas content in the sediment.

3.3 PRELIMINARY MODEL

A preliminary model for scattering from trapped gas bubbles begins with

the following assumptions: (1) the bubbles interact with the evanescent wave,

which is known to penetrate approximately one wavelength into a medium;

(2) the bubble size distribution follows the same form as the pore size

distribution; and (3) the bubbles exist in the fluid component of the saturated

sediment and have a scattering cross section approximately the same as

bubbles in open water.

The motivation behind assumption (1) above is that an incident grazing

angle of 10 is subcritcal for refraction via the Biot fast wave. A relaxation of this

assumption to include Biot slow wave penetration will be studied in future work.

3.3.1 Bubble Size Distribution

The bubble size distribution is estimated in the following manner.

Consider the grains of approximately the same radius rg, approximately round,

and close packed, as in Fig. 3.3. The radius of a sphere that can just fit into the

pore space is rv. Let us define

Ygr = In(.r- )  (3.1)rv

Let us also define a volume ratio,

(3 43

Rvd = Pore volume (8r -4 1Erg)

Grain volume 4 irr3 . (3.2)

3 r

18
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The grains are part of a population. Let y=ln(rg) and let f(y) be the density

function of the grain population in (kg/m 3 )/neper. The volume of the void
between grains of sizes between y and Y+Ygr is given by

Y+Y gt

Vv(y) = f+ f(s) Rvd ds (m3void/m3total space) (3.3)

where p is the density of the grain material and s is a dummy variable of
integration. The total volume of grains smaller than y is

Vg(y) = 1i-f f(s) ds (m3grains/m3total space) (3.4)

The volume of empty void space between the grains of the stated size range is
then

V f(y) = 1Vv(y) - Vg(y) ifVv(y) >Vg(y)(
Vy ifVv(y) _< Vg(y)J (3.5)

The second of these two possibilities represents a case where there are so
many small grains and so few large grains that the large grains are no longer
closely packed. It is advantageous to define a void distribution function fe(y) as

follows:

f Y+Ygr
fe(s) ds = Ve(y) (3.6)

20



In explicit form, then, fe is given by

f.(y) =[dVs]Y+Y [dV(s)]

= [Rvdf(y+ 2 Ygr)-(Rvd+ 1)f(Y+Ygr)+f(-oo)]

- 1 [Rvdf(Y+Ygr)-(Rvd+l)f(y)+f(-oo)]
p

=-l-[Rvd f(y+2 Ygr) - (1+2 Rvd) f(Y+Ygr) + (Rvd+l) f(y)] . (3.7)P

Let the grain density function f(y) be a normal distribution:

ex y-yo)')

f (Y) = Y 2- ) 9(3.8)

where y is a proportionality constant equal to p(1-porosity),yo is the mean, and
ay is the standard deviation. Upon substituting this into Eq. (3.7),

fe(y) {Rv+
p

ex (Y+yg"YO) 2  ex( (y-yo)2l
(l+2Rvd) 2 + (Rvd+1) - - (39)

Equation (3.9) is an equation for the total volume of empty space between
grains of diameter rg=eY in (m3 void/m 3totaI space)/neper. The gas volume
fraction is assumed to be this quantity multiplied by a constant less than or
equal to one:

fb(Y) = F fe(Y). (3.10)

21



The case where =1 corresponds to a dry sediment, i.e., 100% saturated w,
gas. In general is taken to be a constant less than one. Equation (3.10) t[-
is an expression for the gas density function in (m3gas/m 3 tota space)/neper.

The bubbles in the pores are allowed to have radii smaller than rv.
might be the case for nonspherical grains which may pack closer than sph.
ones. It is also possible that a bubble will not occupy the maximum po - ,
amount of pore space. We introduce a constant, Yb, that relates the b,-
radius to the pore radius.

Yb ln(7 -
Srv)

To get a bubble size distribution functior:
(number of bubbles/m3 totaI space)/neper, divide Eq. (3.10) by the I

volume:

fb n(Y) fb(Y) _ fb(Y)

(3) ( -e3(Y-Ygr+Yb))

Upon combining Eqs. (3.9), (3.10), and (3.12), the bubble
distribution is expressible in the following form:

e x K (y+ 2yg, YO)
2 j

4/ipe 3(yyQ'+yb)

(1 + 2Rvd) + (Rvd+l) - o }. (3.13)

22



3.3.2 Scattering Integral

We begin with the scattering cross-section for a single bubble of radius rb
insonified by a signal of frequency f. This is assumed equal to the in-water
scattering cross-section given by Medwin 17and Wildt 18

o(rb) = 4nrb, (3.14)
[(f r/ fy_- 1]2+62

where rfr is approximately 3 and d is approximately 0.1. The total
backscattering cross-section per unit area for a collection of bubbles of size
distribution fbn(Y) is given by

b= f h o(rb) fbn() dy (3.15)

where h is the depth of penetration of the evanescent wave, taken to be one
wavelength. The backscattering strength is then given by

Sb=10 log( (3.16)

The parameies that influence the backscattering strength are: (1) the gas
fraction, (2) the sec rent sound speed, which determines the layer thickness,
(3) the mean, (4) the standard deviation of the logarithm of the sediment grain
size, and (5) bubble radius/pore radius ratio. Only the gas fraction is completely
unknown. In the following analysis this is considered a free parameter and
varied to fit the data.

3.3.3 Comparison with Experiment

Figure 3.4 contains the data from four experimental sites, plotted
separately. Overlaid onto these plots are curves that represent the theoretical
backscattering strength from Eq. (3.16) above. In each case the gas fraction
and bubble radius/pore radius ratio was varied to achieve a best fit. The

23
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appropriate gas fractions ranged from 5x10 -6 to 4x10 -5 . The bubble
radius/pore radius ratios were between 0.1 and 1.

This work is a preliminary study. Several issues need to be addressed in
order to obtain a reliable model. They include: (1) the actual scattering cross-
section of bubbles entrapped in sediment, (2) the mechanism of acoustic
coupling, (3) further work on the bubble population density function and its
causes, (4) experimental measurement of bubble population density, and
(5) the collection of more t ,oerimental data to more conclusively demonstrate
the effect of gas content on backscattering strength.
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4. CONCLUSION

The acoustic penetration modeling based on the Biot theory differs
significantly from that based on viscoelastic theory. Specifically, the Blot theory
predicts much more acoustic penetration at shallow grazing angles than does
viscoelastic theory. Bottom reflection coefficients are also noticeably
influenced. The backscatter problem will likely be influenced, especially at
shallow grazing angles.

Experimental results suggest that gas content may contribute significantly
to the observed backscattering strength in some sediments. Very low gas
fractions can generally account for the observed behavior. These gas fractions

are so small that they will be very difficult to measure. Furthermore, the
observed frequency dependence is consistent with the resonance behavior of
gas bubbles.
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APPENDIX

A COMPARISON OF THE BlOT EQUATIONS AS GIVEN BY
STERN TO THOSE ORIGINALLY PUBLISHED BY BlOT
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Our work originates with a computer model developed by Stern which
incorporates the Biot theory. There are some differences between Stern's
version of the Biot equations and those originally published by Biot. Those
differences can be traced to differences in notation. The following is a
comparison of the Stern's and Biot's equations. It begins with the Biot
equations and applies the differences in notation to arrive at the equations
Stern uses.

Start with the Biot equations given in Biot, 1956:

+ grad[(A+N)e + Q] = (P11 U + P12U) b- U)

a2t a-f

grad[Qe + Re] = -(P 12 U + P 22 U) - b-(u - U)

u = solid displacement vector
U = fluid displacement vector
e = divu
, = divU
N,A,Q,R,b = constants

P11,P12,P22= constants involving the densities of the fluid and solid components:

P11+P12=P1=( 1 -")Ps= mass of solid/unit volume of aggregate

p12+p22=P2=3pf= mass of fluid/unit vo!ume of aggregate

Pii+2p 12+P22=p=mass density of saturated sediment
P12= coupling coefficient

3=porosity
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Stern uses the following parameters in his notation:

w=b(u-U), and
z=divw.

Make the following substitutions to get to the notation of Stem:

U=u-w/b, and
e = e-z/b.

We now have:

NV2u + V[(A+N)e + Q(e = - (Pu + p 12 (u-W-))+ au-u+-) ,and

a2 a

V[Qe +Re - -~]k(P12 U + P22(U U -4--13 at2  a

Upon carrying the del operator through the constants and making further
simplifications, we have:

NV2 u+ (A+N+Q)Ve - QV = (p11+p12)6 - -w + - and (A.1)

(Q + R)Ve - RV = (P12 + p22)iJ- -.W . (A.2)

Add Eqs. (A.1) and (A.2):

NV2u + (A+N+2Q+R)Ve - (Q+R)v = (pjj+2pI2+p22)6 - (P12+P22)- , (A.3)

divide Eq. (A.2) by b:

(Q + R)Ve - _RV= (P12 + P22)i -_ P22w _ b w  (A.4)
13 1}2 3 32 132
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make the following substitutions in Eqs. (A.3) and (A.4):

N=m
A+N+2Q+R=H-2m
(Q+R)/b=C
r11 +2r1 2 +r22=.r
r2+r22=brf

R/b2=M
r22/b=cr

b/b2 =Fh/k.

We now have:

VJ.2 U + (H-21)Ve - CVC = pil - pjW

CVe- MVC = p --- w -i ----w

The above equations are Eqs. (12) and (13) in Stern, 1985.
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